NOTES FOR SECTION 7.1

Question: How to find all the eigenvalues and eigenvectors of an $n \times n$ matrix A ?

Step 1. Find the characteristic polynomial of A

$$
p(\lambda)=\left|\lambda I_{n}-A\right| .
$$

By the fundamental theorem of algebra,

$$
p(\lambda)=\left(\lambda-\lambda_{1}\right)^{k_{1}} \cdots\left(\lambda-\lambda_{r}\right)^{k_{r}},
$$

where $\lambda_{1}, \cdots, \lambda_{r}$ are different constants. Then $p(\lambda)=0$ has roots

$$
\lambda_{1}, \cdots, \lambda_{r} .
$$

They are all the eigenvalues of A.
Step 2. The space of eigenvectors corresponding to the eigenvalue λ_{i} is called the eigenspace of λ_{i}, denoted by E_{i}.
Then

$$
E_{i}=N\left(\lambda_{i} I_{n}-A\right),
$$

that is the eigenvectors corresponding to λ_{i} are the solutions to

$$
\left(\lambda_{i} I_{n}-A\right) v=0 .
$$

Two important facts:

1. Assume that $\operatorname{dim} E_{i}=\operatorname{dim} N\left(\lambda_{i} I_{n}-A\right)=m_{i}$. Then $1 \leq m_{i} \leq k_{i}$.
2. Assume that $\left\{v_{i}, \cdots, v_{i, m_{i}}\right\}$ is the basis for $E_{i}=N\left(\lambda_{i} I_{n}-A\right)$. Then

$$
\cup_{i=1}^{r}\left\{v_{i}, \cdots, v_{i, m_{i}}\right\} \quad \text { are linearly independent. }
$$

Diagonalization: Assume that A is an $n \times n$ matrix, and $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are all the eigenvalues of A (counting multiplicity, which means some of them are the same). Suppose that v_{i} is an eigenvector with respect to λ_{i}. Moreover,

$$
\left\{v_{1}, \cdots, v_{n}\right\} \quad \text { form a basis for } \mathbb{R}^{n} .
$$

Let $P=\left[v_{1} \cdots v_{n}\right]$ and

$$
D=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right] .
$$

Then

$$
A P=\left[A v_{1} \cdots A v_{n}\right]=\left[\lambda_{1} v_{1} \cdots \lambda_{n} v_{n}\right]=P D
$$

Hence

$$
P^{-1} A P=D .
$$

Definition 1. Two $n \times n$ matrices A, B are call similar if there is an invertible $n \times n$ matrix P such that

$$
P^{-1} A P=B .
$$

We usually denote it by $A \sim B$.

